Refine Your Search

Topic

Author

Search Results

Technical Paper

The United States SST and Air Quality

1971-02-01
710320
The feasibility of commercial supersonic flight has been questioned on the basis of air pollution and an alleged potential for altering the world's climate and weather. A study conducted by Boeing reveals no basis for any of these claims. However, in some cases more data are required to show there is no effect.
Technical Paper

Managing the Technical Development of the 727

1962-01-01
620464
Studies in a jet passenger airliner to service shorter routes than those of the Boeing 707 evolved the concept of a rear mounted three engine jet, the 727. The development program had many facets, including extensive use of mockups, customer influence on design through liaison, cost control, and a considerable amount of work on the design of the tail and location and number of engines on the craft.
Technical Paper

Economic and Safety Aspects of Short Haul V/STOL Aircraft on High Density Routes

1962-01-01
620474
Intercity automobile travel has a direct effect on the volume of short haul air travel. Automobile transportation is quicker and more economical as compared with the long ground waiting time and higher rates of short air trips. A multistop system, using the V/STOL aircraft, between cities may save passengers time by closer departure points, and increased passenger miles may reduce rates. Advantages of speed and less cost enjoyed by automobile travelers may well be offset by these developments. A mere 15% transfer of short haul trips to aircraft could result in as much as 106% increase in air revenue passenger miles.
Technical Paper

International Space Station Design for Dexterous Robotics - Inboard Truss Segments

2000-07-10
2000-01-2357
Over 200 International Space Station external high maintenance items have been designed for replacement by a dexterous robotics system in addition to space-suited astronauts. Planning for dexterous robotics maintenance increases flexibility for space station operations with a robot able to execute many tasks in place of a suited crew member, lowering the number of hours crew must spend on Extravehicular Activity (EVA). The five inboard truss segments of the station - S3, S1, S0, P1 and P3 - include 122 of these robot compatible maintenance items or On-orbit Replaceable Units (ORUs). This paper describes the impact robotic compatibility has had on the International Space Station (ISS) design, reviewing the inboard truss items as examples. Diverse challenges exist to verify each genre of ORU meets the dexterous robotics requirements.
Technical Paper

CFD Studies on the ECLSS Airflow and CO2 Accumulation of the International Space Station

2000-07-10
2000-01-2364
During a recent International Space Station (ISS) flight (Flight 2A.1), an improper ventilation event might have occurred and resulted in stuffy air, as reported by the crew. Even though no air samples were analyzed, the accumulation of metabolic CO2 in the ISS was suspected as the cause of the crew sickness. With no possibility of conducting an on-orbit test of this kind, it was decided to utilize Computational Fluid Dynamics (CFD) analysis to investigate this problem. Based on the Flight 2A.1 and 2A.2a configurations, a CFD model of the air distribution system was built to characterize airflow between the ISS elements. This model consists of Inter-module Ventilation (IMV) covering the Functional Cargo Block (FGB), two Pressurized Mating Adapters (PMA-1 and PMA-2), the Node-1, and portions of the Orbiter volume.
Technical Paper

International Space Station Propulsion Module Environmental Control and Life Support System

2000-07-10
2000-01-2296
The United States Propulsion Module (USPM) is a pressurized element and provides reboost, propulsive attitude control, control moment gyro (CMG) desaturation, and collision avoidance functions for the International Space Station (ISS). The USPM will dock with Node 2 at the pressurized mating adapter-2 (PMA-2). After docking with PMA-2, the USPM will provide mechanical and structural interfaces to the Space Shuttle, along with facilities for crew transfer and receiving resupply oxygen, nitrogen, water, helium, and propellants from the Space Shuttle. It is essential that the USPM maintain a safe and functional life support system during crew member passage and maintenance activities. It is complex and costly to design an operational system to satisfy all ISS requirements. This paper details an innovative USPM environmental control and life support system (ECLSS) design that satisfies all ISS requirements at a reduced cost.
Technical Paper

Electric 30,000 RPM Shave Spindle for C Frame Riveter and High Performance Compact Aerospace Drill

2000-09-19
2000-01-3017
Two spindles are discussed in this paper. The first spindle was installed on nine C-frame riveters on the 737/757 wing line at the Boeing Renton facility. Due to discontinuing the use of Freon coolant and cutting fluid, the C-frame riveters had difficulty shaving 2034 ice box rivets with the existing 6000 RPM hydraulic spindles. The solution was to install electric 30,000 RPM shave spindles inside the existing 76.2 mm (3 in.) diameter hydraulic cylinder envelope. The new spindle is capable of 4 Nm (35 in. lbs.) of torque at full speed and 110 kgf (250 lbs.) of thrust. Another design of interest is the Electroimpact Model 09 spindle which is used for 20,000 RPM drilling and shaving on wing riveting systems. The Model 09 spindle is a complete servo-servo drilling system all mounted on a common baseplate. The entire spindle and feed assembly is only 6.5″ wide.
Technical Paper

Assembly Techniques for Space Vehicles

2000-09-19
2000-01-3028
Assembly techniques for the majority of expendable and reusable launch vehicles have not changed much over the last thirty years. Some progress has been made, specifically on new programs, however, improvements on existing expendable launch vehicle production lines can be difficult to justify; even more so for one or two reusable vehicles. This presentation will focus on techniques and systems used for manual and automated assembly of expendable and reusable launch vehicle primary structures. Today's assembly is characterized by manual operations involving fixtures and templates, and all tasks are carried out primarily with single function hand tools. Typical assembly approaches used for metallic and composite primary structures will be discussed. Potential opportunities for process improvements utilizing advanced hand tools, mechanized and/or automated equipment will be addressed.
Technical Paper

Integrated Metrology & Robotics Systems for Agile Automation

2000-09-19
2000-01-3033
Aircraft manufacturing in the 21st century sees a future much different to that seen one and two decades before. Manufacturers of both military and commercial aircraft are challenged to become Lean, Agile and Flexible. As progress is slowly made toward introducing advanced assembly systems into production, the overall cost of automation is now more closely scrutinized. After spending tens of millions of dollars on large automated systems with deep foundations, many manufacturers find themselves locked into high cost manufacturing systems that have specific, inflexible configurations. This kind of scenario has caused a shift in the attitude of airframe assemblers, to go back to basics. Lean manufacturing is seen as a way to build aircraft with very low investment in equipment and tools. Today's advanced systems developers do understand the need for more affordable assembly systems.
Technical Paper

Payload Attach System for the ISS - Development and Verification for EVA Operations

1999-07-12
1999-01-2037
The process of developing a Payload Attach System (PAS) which will support a wide range of experimental and commercial payloads on the International Space Station (ISS) has experienced an interesting evolution during its design, development, test and evaluation (DDT&E) phase. This evolution has been caused in large measure by requirements intended to insure compatibility of the PAS with the extravehicular activity (EVA) crewmember during nominal and contingency operations in and around the PAS sites. As the design of the ISS transitioned from its Freedom predecessor, the effort to keep costs down by preserving as much of the original Freedom design as possible led to design decisions that challenged engineering thinking.
Technical Paper

Space Station Lab Flight Test Article Results and Analytical Model Correlations

1999-07-12
1999-01-2196
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. This paper reports on the results of Open Hatch ECLSS/ TCS Tests for International Space Station’s Lab Module. The hardware tested is referred to as proto-flight hardware. Upon satisfactorily passing these Open Hatch and later Closed Hatch, imposed ground based, proto-flight tests, the proto-flight hardware will become flight hardware. The Lab Module is scheduled for launch during late 1999. The particular ECLSS/TCS equipment discussed here are the Temperature Humidity and Control (THC) equipment and Intermodule Ventilation (IMV) equipment.
X